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Abstract—In this work, we describe research directed towards
cooperative, predictive driver assistance. We describe predictive
driver assistance systems, which aim to make longer-term
predictions about the on-road environment, supporting positive
HMI with the driver. Given the rapid development of advanced
sensing, computational, and algorithmic technologies, intelligent
vehicles are now approaching an era in which the vehicle can
maintains a full panoramic awareness. Thus, the instrumented
vehicle will be available to help the driver navigate the on-road
environment, when the driver requests it. As predictive driver
assistance systems are developed, it will be shown that cooper-
ative integration, across vehicles, will improve the performance
and overall on-road safety. We divide the scope of cooperation
systems into four main areas: in-vehicle systems cooperation,
vehicle-driver cooperation, cooperation across vehicles (V2V),
and finally cooperation with vehicles and infrastructure (V2I).
Each level of cooperation will quantitatively improve on-road
safety performance, and allow for increased sophistication and
prediction.

Index Terms - Driver Assistance, Cooperative Systems.

I. INTRODUCTION

According to NHTSA, in 2009, automotive collisions in
urban environments accounted for 43% of fatal crashes in
the United States. Tens of thousands of peoples are killed on
the roads each year, and most fatal crashes feature more than
one vehicle [1]. As research in sensing and environmental
perception progresses, there is great potential to save lives by
developing advanced driver assistance systems. Over the past
decade, there has been significant research effort dedicated
to the development of intelligent driver assistance systems,
intended to enhance safety by monitoring the driver and the
on-road environment [2], [3]. In particular, surround analysis
and understanding using vehicle-based sensing will be crucial
to enhancing the safety of drivers, vehicle occupants, and
other road users.

Until recently, decision-making for active safety in driver
assistance has fit a binary decision paradigm. Systems based
on fundamental on-road perception make simple decisions.
In the case of lane estimation [4], lane departure warning
(LDW) systems indicate when the vehicle is deviating or
departing from the ego-lane. When a driver is being assisted,
the feedback is delivered as negative HMI, communicating
that the maneuver is not feasible.

Sensing technologies, computation, and algorithms are
rapidly developing [5]. Coming generations of intelligent
vehicles will have a sophisticated understanding of the on-
road environment, featuring robust predictive capabilities.
In this work, we explore the next generation of predictive
driver assistance, which facilitates positive HMI. The systems
discussed in this paper are intended to understand when a
maneuver is feasible, and advise the driver when and how to
execute the lane change or merge. Figure 1 illustrates the full

spectrum of maneuver-based decision systems in intelligent
vehicles. At one end, we have fully manual driving. At
the other, we have fully autonomous driving [6]. Successful
integration of predictive driver assistance is a multi-faceted
research task, brings together researchers from engineering,
psychology, and human factors. Inherent in the successful in-
tegration will be navigating the various levels of cooperation
required for safe, predictive, and successful driver assistance.

In this work, we examine cooperative, predictive driver
assistance, focusing on cooperation and four different levels.
First, we focus on in-vehicle systems cooperation, integrating
multiple sensors and systems for enhanced performance.
Then, we look at vehicle-driver cooperative driving, in which
the driver relinquishes full control to the vehicle, and vice
versa. We then look at cooperative safety across vehicles, with
communication between vehicles using ad-hoc V2V wireless
networks. Finally, we look at cooperation between vehicles
and infrastructure nodes using V2I networks, for enhanced
ramp metering and other improvements. Figure 2 outlines
the proposed approach.

The remainder of this paper is structured as follows. The
following section describes cooperative active safety within
the vehicle, including multiple systems, predictive driver as-
sistance, and driver-vehicle cooperation. Section 3 describes
cooperation between vehicles (V2V), and with infrastructure
(V2I). Section 4 presents quantitative results. Section 5 offers
concluding remarks.

II. IN-VEHICLE COOPERATIVE, PREDICTIVE DRIVER

ASSISTANCE

The first step in cooperative, predictive driver assistance
involves integration across multiple systems on the same
vehicle. While individual perception modules have often been
developed with one objective in mind, we show in this
section that integrating multiple systems can achieve two
main objectives:

• Enhanced performance of each respective system
• Higher-level understanding, interpretation, and predic-

tion on the road.

We examine each of these objectives, exemplified by recent
works in the field.

A. Integrated Lane and Vehicle Tracking

Recent work in the intelligent vehicles literature has ex-
amined synergistic integration of lane and vehicle tracking
for driver assistance. Integration results in a final system
that improves on the performance of both lane tracking
and vehicle tracking modules. Further, integration provides
information of higher contextual relevance that neither the
lane tracker nor vehicle tracker can provide by itself [7].
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Fig. 1. The full spectrum of maneuver-based decision systems in intelligent vehicles, with implications for driving. At one end, there is
fully manual driving. Active safety systems, such as lane departure warning (LDW) and side warning assist (SWA) are already becoming
more commercially-available. Predictive driver assistance remains an open area of research. Cooperative driving will integrate predictive
systems, and seamlessly allow hand-offs of control between driver and autonomous driving. At the far end of the spectrum is fully
autonomous driving, with no input from the driver.

Fig. 2. Cooperative, Predictive Driver Assistance. At the lowest level of cooperation, vehicles integrate stand-alone active safety systems,
resulting in improved quantitative performance, and enhanced predictive driver assistance. Vehicles and drivers also cooperate. Vehicles
communicate with each other (V2V) using ad-hoc networks. Infrastructure nodes adaptively meter on-ramps and traffic signals using V2I
communication.

Integration of lane and vehicle tracking achieves improved
tracking performance of each module via system integration.
The integration of the two systems can be framed in terms of
a feedback loop in a partially-observed system, where lane
and vehicle estimates are information states [8]. Lane ob-
servations augment estimation of the vehicles, while vehicle
observations augment lane estimation. Figure 3(a) plots the
localization estimates of the lane tracker, the integrated lane
and vehicle tracking system, and ground truth on the same
axis. We see a clear difference between the two systems. It
is here that we observe the large change in lane localization

error due to changes in traffic density. Correspondingly, we
see performance improvements in the vehicle tracker due to
integration in figure 3(b). Cooperation between multiple sys-
tems is shown to quantitatively improve system performance
in the vehicle [7].

B. Multi-System Cooperative Predictive Driver Assistance

Cooperative integration allows for higher-order function-
ality and predictive driver assistance. Cooperative systems
integration allows for new functionalities to assist the driver.
Integrating data from multiple sensors, we formulate a com-
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Fig. 3. 3(a) Estimated position of the right lane marker vs. frame number, showing improved performance using integration. At frame 4000,
the vehicle performs a lane change, which the stand-alone lane tracker misses, while the integrated lane and vehicle tracking maintains
tracking [7]. 3(b) Recall vs. False Positives per Frame, comparing vehicle detection and tracking alone [7]. Integrated lane and vehicle
tracking has better performance in terms of false positives per frame. 3(c) Typical performance of integrated lane and vehicle tracking on
highway [7].

pact representation for the on-road environment, the Dynamic
Probabilistic Drivability Map, used for high-level interpreted
data [9]. The DPDM readily integrates data from on-road
tracking modules, in order to compute the drivability of the
ego-vehicle’s surround in accordance with physical and legal
constraints.

The instrumented vehicle is shown in figure 5(a), and
includes radar, lidar, and vision, enabling on-road vehi-
cle tracking as depicted in figure 5(b). Beyond geometry,
drivability cells carry a probability of drivability, based on
sensor observations. Lane information comes from the lane
estimation module, which tracks the lanes using the on-board
forward-looking camera. Vehicles and obstacles are detected
and tracked using a sensor fusion system based on lidar and
radar sensors.

We define the space of sensor observations Y into tracked
vehicles and objects V , and lane marker information L. At
time k, we compute the probability of drivability for a given
cell P (Dk|Yk), given the observations, using equation 1. We
compute P (Dk|Yk) separately given V and given L, and
take the minimum probability of drivability. We propagate
probabilities to the next time instant using Π, the state
transition matrix, where Wk+1 is a martingale increment
process. We use the DPDM, plotted in figure 5(c) [9], to solve
for the minimum-cost solution to merging into the adjacent
lane, recommending when and how to merge.

P (Dk|Vk) =
P (Vk|Dk)P (Dk)

P (Vk)

P (Dk|Lk) =
P (Lk|Dk)P (Dk)

P (Lk)

P (Dk|Yk) = P (Dk|Vk, Lk) = min{P (Dk|Vk), P (Dk|Lk)}
P (Dk+1|Dk) = Π, Dk+1 = ΠDk +Wk+1

(1)

C. Vehicle-Driver Cooperative Driving

While autonomous driving has been an active and highly-
publicized area of research, many challenges remain before

Fig. 4. Multi-level framework for cooperative active safety between vehicles
(V2V), and between vehicles and infrastructure (V2I). V2V communication
uses ad-hoc 5.9GHz networks. V2I uses standard IEEE 802.11p wireless
protocol, with infrastructure nodes functioning has communication hubs.

full-scale deployment of autonomous vehicle is practical [10].
Robots can drive in controlled environments, even with other
robotic vehicles on the road, but navigating typical traffic
situations is still quite difficult. Currently, fully-autonomous
research vehicles are expensive, and not yet practical for
consumers.

There will be a gradual transition from today’s fully-
manual vehicles to vehicles that can perceive and understand
driving [6], as well as the driver. To this end, the vehicle and
the driver will participate in cooperative driving, seamlessly
handing off control of the vehicle. Researchers are already
studying driver-vehicle interactivity and vehicles’ understand-
ing of the attentional state of the driver [11]. It is shown
[12] that autonomous braking can enhance the life-saving
capabilities in forward collision situations.

III. PREDICTIVE DRIVER ASSISTANCE: V2V AND V2I
INTEGRATION

Communication networks between vehicles (V2V), and
between vehicles and infrastructure (V2I) are rapidly devel-
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Fig. 5. 5(a) Advanced multi-sensor suite for advanced environmental perception will include vision, lidar, and radar, and feature near-360 degree field-
of-view [9]. 5(b) On-road vehicle tracking [3], combining multiple sensing modalities. 5(c) Map of drivability, based on sensor fusion and probabilistic
modeling [9]

oping [13], and will play an important role in cooperative ac-
tive safety. The IEEE 802.11p standard, operating at 5.9GHz
has been shown effective in research applications, such as
robotic platooning [14]. Government-sponsored research in
the areas of V2I [15] and V2V [16] has been gathering
momentum. The DOT-sponsored Intellidrive project [17]
has proposed several levels of communication protocols.
However, industry-wide and governmental communication
standardization will take time. Market penetration of new
devices will also take time, with NHTSA estimating just 27%
market penetration after 10 years [18]. Partial penetration of
predictive driver assistance technologies, along with coopera-
tive active safety at various levels, will still have a quantitative
impact on safety.

We envision a multi-tiered market penetration of predictive
driver assistance. At the high end, vehicles will be extensively
instrumented for sensing [Figure 5(a)], computation, and
communication. At the lower end of the market, new vehicles
will be equipped with wireless communication for V2V and
V2I. Figure 4 illustrates this scenario.

A. Vehicle-Vehicle Cooperative Predictive Driver Assistance

V2V communication will act as a proxy for sensor-
equipped vehicles. The vehicles will transmit their locations
and dynamics to the nearest vehicles, with each vehicle
equipped with a routing switch for ad-hoc networking. While
latency and missed packets are a drawback of V2V networks,
the cost is favorable to advanced sensing technology [19].
Due to the extremely favorable cost, V2V communication
will penetrate the market far sooner than advanced sensing
such as lidar [6]. Transmitted dynamics will serve as a

substitute for vehicle detection and tracking, with active
safety systems taking collision-avoidance action as necessary.
V2V coordination has been shown effective for platooning,
and has the potential to enhance throughput on busy roads
[14], demonstrating the potential to alleviate rush hour traffic
with autonomous driving.

B. Vehicle-Infrastructure Cooperative Predictive Driver As-
sistance

V2I communication will utilize a similar communication
protocol as V2V, but infrastructure nodes will act as local
hubs for local wireless networks. Vehicles equipped for com-
munication will hop to the nearest available network, sending
their dynamics and location. Using data sent by vehicles,
infrastructure hubs can perform adapting metering for on-
ramps and traffic signals. The adaptive metering will enhance
safety, as well as maximizing throughput on busy roads.
Performance using V2I will far exceed adaptive metering
using inductive loop sensors, which are expensive and cover
extremely limited range. Adaptive on-ramp metering has
already been shown effective and safe in recent research
studies, both in simulation and in real-world deployment
[20], [21]. Nation-wide standards will need to be adopted for
greatest impact, and the effectiveness will be more dependent
on market penetration than V2V and in-vehicle cooperative
active safety systems.

IV. COOPERATIVE PREDICTIVE DRIVER ASSISTANCE:
EVALUATIONS AND IMPROVEMENTS

In order to measure the expected payoff for cooperative
integrated safety, we perform simulations to illustrate the
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relevant contributions. We quantify the contribution of co-
operative safety by conducting Markov Chain Monte Carlo
(MCMC) simulations based upon a typical merging scenario,
with the initial positions and speeds of the oncoming and
merging vehicles are randomly generated. We test four sce-
narios for a merging vehicle, into oncoming highway traffic.
For each scenario, we run 100,000 simulations.

• Stock vehicles, with no predictive driver assistance
• Merging vehicle equipped with predictive merge driver

assistance [9]
• Merging vehicle equipped with predictive merge driver

assistance [9], communication with target vehicle using
V2V

• Stock vehicles, with adaptive ramp-metering using in-
frastructure node, communication using V2I

We model the driver’s reaction time according to [22],
assuming the driver’s reaction time is dependent on his
anticipation of the merge event, which takes one of three
cases: fully anticipated (0.7 sec.), unexpected (1.2 sec), or
surprised (1.5 sec.). We assume each alertness level equally
probable, with standard deviation of 0.1 seconds. Initial
position and relative velocities of oncoming vehicles are
randomly generated.

We model the V2V and V2I channels identically. Assumed
operation consists of 100 meter line-of-sight, with no packet
loss, at a 10-Hz message frequency, in line with real-world
tests conducted using the protocol for autonomous coopera-
tive driving [14]. Over the communication channels, we as-
sume that a vehicle instrumented with advanced sensing sends
its position, velocity, and necessary acceleration for safe
merging to the nearest oncoming vehicle. Vehicles that are not
instrumented with advanced sensing simply receive messages,
and provide suggested accelerations to their drivers. The V2I
for adaptive ramp metering aims to provide the merging
vehicle a 1.5 timegap in which to merge.

We quantify the performance of the assistance frameworks
using the minimum required acceleration necessary for safe
merging, using dynamical equations [23]. As shown in figure
6, as the relative velocity between vehicles in the merge lane
increases, so does the necessary acceleration for maintaining
a safe distance. If at any point during a given merge, the
necessary acceleration exceeds 7 m

s2 , we categorize the event
as a near-collision.

The red plot shows the necessary acceleration in the
baseline case, in the absence of advanced sensing and wire-
less communications. The blue plot in figure 6 shows the
necessary acceleration, assuming that the merging vehicle
is equipped with advanced sensing, and merge assistance
[9]. We see a reduction in the necessary safe acceleration,
as the vehicle is aware of oncoming traffic due to sensor-
based tracking. The vehicle’s awareness of traffic conditions,
and acceleration recommendations to the driver, reduce the
driver’s effective reaction time, allowing for safer merging.

The black plot in figure 6 represents the necessary accel-
eration for merging, assuming adaptive ramp metering based
on V2I. In this situation, oncoming vehicles send their unique
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Fig. 6. Required acceleration to merge vs. relative velocity of oncoming
vehicles. We see that predictive driver assistance improves the required
acceleration over baseline. Predictive merge assistance combined with V2V
communication gives the best results.

ID, position, and velocity, and the adaptive ramp attempts to
facilitate safe merging by modulating the merging vehicle’s
entry into traffic, effectively increasing the timegap during
merging. We see in the 6 that the adaptive ramp metering
lowers the necessary acceleration for merging.

The green plot in figure 6 shows the necessary acceleration
for merging, assuming that the merging vehicle is equipped
with merge assistance [9], and both the oncoming and merg-
ing vehicle have V2V communications capabilities. In this
case, the non-instrumented vehicle receives messages from
the merging vehicle, detailing necessary accelerations. The
communication channel conveys that the oncoming vehicle
may have to reduce its speed, while the merging vehicle
increases speed. The communication channel effectively re-
duces the effects of driver reaction time.

As shown in figure 6 and table I, predictive merge assis-
tance assistance offers great advantages and enhanced safety
over the baseline case. Incorporating V2V communications
improves the safety even moreso, supporting the claim that
partial market penetration of predictive driver assistance
systems will still have a great impact. V2I-based adaptive
ramp metering also shows strong improvements. The best
performance comes from partial market penetration of predic-
tive driver assistance, combined with V2V communication.
This result is encouraging, given that markets will adapt
to new technology faster than governments will install new
infrastructure.

Research challenges still remain in implementing these
results for everyday driving. Currently, the sensing and
computation used for research-grade intelligent vehicles [6],
[9] is quite expensive, and beyond the reach of the typical
consumer. As embedded sensors and computation become
cheaper, these technologies will begin to make their way into
production-mode vehicles. Implementation of the communi-
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TABLE I
PERCENTAGE OF NEAR-COLLISIONS DURING MERGES

Driver Assistance Baseline Merge Assist Merge Assist+V2V V2I Adaptive Ramp Me-
tering

Percentage 7.1% 0.81% 0.14% 0.27%

cation networks for V2V and V2I systems will also present
challenges, such as achieving robustness and flexibility for
the ad-hoc networks, and convincing auto manufacturers and
governments to agree on a consistent standard.

V. CONCLUDING REMARKS

In this work, we have described future trends in active
safety, built upon predictive driver assistance and coopera-
tion between systems, vehicles, and infrastructure. Predic-
tive driver assistance systems, equipped with high-fidelity
sensing, will aim to make longer-term predictions supporting
positive HMI with the driver. Beyond simply detecting and
reacting to dangerous scenarios, intelligent vehicles will
maintain a full awareness, standing ready and available to
help the driver navigate the on-road environment. As predic-
tive driver assistance systems are developed, it will be shown
that integrating systems in a cooperative manner will improve
the performance and overall on-road safety.

We have examined cooperation systems in four main areas:
in-vehicle systems cooperation, vehicle-driver cooperation,
cooperation across vehicles, and finally cooperation with
vehicles and infrastructure. In-vehicle systems cooperation
will quantitatively improve active safety performance, by
leveraging multiple systems running in the same car. Vehicle-
driver cooperative driving will integrate predictive driver
assistance systems and autonomous driving, aiming for seam-
less transfers of control between the driver and the vehicle.
Finally, cooperative active safety across vehicles, using V2V
and V2I communication channels will quantitatively improve
the performance of active safety systems.
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